If it's not what You are looking for type in the equation solver your own equation and let us solve it.
60x+x^2=256
We move all terms to the left:
60x+x^2-(256)=0
a = 1; b = 60; c = -256;
Δ = b2-4ac
Δ = 602-4·1·(-256)
Δ = 4624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4624}=68$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-68}{2*1}=\frac{-128}{2} =-64 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+68}{2*1}=\frac{8}{2} =4 $
| 4(9+b)=-4 | | 21=7-a | | 6^x=3^3x-6 | | x^2-23x-77=0 | | -2.5m-0.77m=-2.7+1.2m+0.1m+0.872 | | b6+14=15 | | -6(4+s)=-42 | | 3u^2+7u-6=7(6+u) | | 20+d2=18 | | 8+h=3h | | 2=-2q | | 3.1x-11.61=7.3 | | 19u–14u+4u+u–6u=20 | | -7-9g=-10g-6 | | 204=26-y | | -3t-1+X=3 | | 4.2517+3.7b=0.8b+1.2b | | 2-3(n+7)=2+4n | | -u+208=30 | | 3.7v+1.2=0.1-3.7v-3.6v | | 0=y–126 | | 4(q-8)=7q+8 | | 221=-x+58 | | m(m+4)=16 | | 4x-3.9x-4.73=x-1.4 | | 8x+3=50+3x | | 2u+9=5u | | 5.x+1/2=31/2 | | 6+6r=24 | | 5(k-2)-(8k=-34 | | 32=6w–16 | | (4^x)(2)=(3^x)(243) |